Refine Your Search

Topic

Author

Search Results

Technical Paper

The Role of Aerodynamics in the 1955 Le Mans Crash

2008-12-02
2008-01-2996
In the 1955 Le Mans race the worst crash in motor racing history occurred and this accident would change the face of motor racing for decades. After the crash numerous investigations on the disaster were performed, and fifty years after some interesting books were launched on the subject. However, a number of key questions remain unsolved; and one open area is the influence of aerodynamics on the scenario, since the Mercedes-Benz 300 SLR involved in the crash was equipped with an air-brake and its influence on the accident is basically unknown. This work may be considered as a first attempt to establish CFD as a tool to aid in resolving aerodynamic aspects in motor sport accidents and in the present paper, CFD has been used to investigate the aerodynamics and estimate the drag and lift coefficients of the Mercedes-Benz 300 SLR used in the Le Mans race of 1955.
Technical Paper

Improving the Cooling Airflow of an Open Wheeled Race Car

2008-12-02
2008-01-2995
In this case study the cooling airflow of an existing open wheeled racecar has been improved with the use of Computational Fluid Dynamics. The race team in context had at several occasions experienced overheating of their racecar and was looking for ways to improve the cooling performance without changing the bodywork radically. As the car is used for autocross events on tight and twisty courses it spends most of a lap in yawed condition. Therefore, a novel approach was taken to model these yawed conditions with the numerical method. The simulation was based on the fully detailed race car. Through the study it was possible to locate problem areas, and hence, give indications to where the bodywork should be modified. With subtle changes to the bodywork the cooling performance of the car was significantly improved and the drag kept at the same level.
Journal Article

CFD-Based Optimization of a Diesel-fueled Free Piston Engine Prototype for Conventional and HCCI Combustion

2008-10-06
2008-01-2423
This paper presents results of a parametric CFD modeling study of a prototype Free Piston Engine (FPE), designed for application in a series hybrid electric vehicle. Since the piston motion is governed by Newton's second law, accounting for the forces acting on the piston/translator, i.e. friction forces, electrical forces, and in-cylinder gas forces, having a high-level control system is vital. The control system changes the electrical force applied during the stroke, thus obtaining the desired compression ratio. Identical control algorithms were implemented in a MATLAB/SIMULINK model to those applied in the prototype engine. The ignition delay and heat release data used in the MATLAB/SIMULINK model are predicted by the KIVA-3V CFD code which incorporates detailed chemical kinetics (305 reactions among 70 species).
Technical Paper

Development of a Model Scale Heat Exchanger for Wind Tunnel Models of Road Vehicles

2008-04-14
2008-01-0097
During the development of the aerodynamic properties of fore coming road vehicles down scaled models are often used in the initial phase. However, if scale models are to be utilised even further in the aerodynamic development they have to include geometrical representatives of most of the components found in the real vehicle. As the cooling package is one of the biggest single generators of aerodynamic drag the heat exchangers are essential to include in a wind tunnel model. However, due mainly to limitations in manufacturing techniques it is complicated to make a down scaled heat exchanger and instead functional dummy heat exchangers have to be developed for scaled wind tunnel models. In this work a Computational Fluid Dynamics (CFD) code has been used to show that it is important that the simplified heat exchanger model has to be of comparable size to that of the full scale unit.
Journal Article

Multi-hole Injectors for DISI Engines: Nozzle Hole Configuration Influence on Spray Formation

2008-04-14
2008-01-0136
High-pressure multi-hole injectors are one candidate injector type for closed-spaced direct injection (DI) gasoline engines. In such a system, the spark plug must be located close to the spray and, during stratified operation, the spray is ignited very soon after the fuel droplets have been vaporized. Thus there are very high demands on the sprays used in such a system. An additional challenge is the positioning of the spark plug relative to the spray; both consistent ignitability and the absence of liquid fuel droplets must be achieved. Many injector parameters influence spray formation; for example, hole diameter, length to hole diameter ratio, nozzle hole configuration etc. This paper investigates the spray formation and spray induced air movement associated with rotational symmetrical and asymmetrical nozzle hole configurations.
Technical Paper

The Influence of PRF and Commercial Fuels with High Octane Number on the Auto-ignition Timing of an Engine Operated in HCCI Combustion Mode with Negative Valve Overlap

2004-06-08
2004-01-1967
A single-cylinder engine was operated in HCCI combustion mode with different kinds of commercial fuels. The HCCI combustion was generated by creating a negative valve overlap (early exhaust valve closing combined with late intake valve opening) thus trapping a large amount of residuals (∼ 55%). Fifteen different fuels with high octane numbers were tested six of which were primary reference fuels (PRF's) and nine were commercial fuels or reference fuels. The engine was operated at constant operational parameters (speed/load, valve timing and equivalence ratio, intake air temperature, compression ratio, etc.) changing only the fuel type while the engine was running. Changing the fuel affected the auto-ignition timing, represented by the 50% mass fraction burned location (CA50). However these changes were not consistent with the classical RON and MON numbers, which are measures of the knock resistance of the fuel. Indeed, no correlation was found between CA50 and the RON or MON numbers.
Technical Paper

Simulation of a Two-Stroke Free Piston Engine

2004-06-08
2004-01-1871
The free piston internal combustion engine used in conjunction with a linear alternator offers an interesting choice for use in hybrid vehicles. The linear motion of the pistons is directly converted to electricity by the alternator, and the result is a compact and efficient energy converter that has only one moving part. The movement of the pistons is not prescribed by a crank mechanism, but is the result of the equilibrium of forces acting on the pistons, and the engine will act like a mass-spring system. This feature is one of the most prominent advantages of the FPE (Free Piston Engine), as the lack of mechanical linkage gives means of varying the compression ratio in simple manners, without changing the hardware of the engine. By varying the compression ratio, it is also it possible to run on a multitude of different fuels and to use HCCI (Homogeneous Charge Compression Ignition) combustion.
Technical Paper

Conceptual Design of Distributed by-Wire Systems

2002-03-04
2002-01-0271
A design method for ultra-dependable control-by-wire systems is presented here. With a top-down approach, exploiting the system's intrinsic redundancy combined with a scalable software redundancy, it is possible to meet dependability requirements cost-effectively. The method starts with the system's functions, which are broken down to the basic elements; task, sensor or actuator. A task graph shows the basic elements interrelationships. Sensor and actuator nodes form a non-redundant hardware architecture. The functional task-graph gives input when allocating software on the node architecture. Tasks are allocated to achieve low inter-node communication and transient fault tolerance using scalable software redundancy. Hardware is added to meet the dependability requirements. Finally, the method describes fault handling and bus scheduling. The proposed method has been used in two cases; a fly-by-wire aircraft and a drive-by-wire car.
Technical Paper

Simulations of Fuel/Air Mixing, Combustion, and Pollutant Formation in a Direct Injection Gasoline Engine

2002-03-04
2002-01-0835
Simulations of a Direct Injection Spark Ignition (DISI) engine have been performed for both early injection with homogeneous charge combustion and for late injection with stratified charge combustion. The purpose has been to study flow characteristics, fuel/air mixing, combustion, and NOx and soot formation. Focus is put on the combustion modeling. Two different full load cases with early injection are simulated, 2000 rpm and 6000 rpm. One load point with late injection is simulated, 2000 rpm and 2.8 bar net MEP. Three different injection timings are simulated at the low load point: 77, 82, and 87 CAD bTDC. The spray simulations are tuned to match measured spray penetrations and droplet size distributions at both atmospheric and elevated pressure. Boundary conditions for the engine simulations are taken from 1-D gas exchange simulations that are tuned to match engine tests.
Technical Paper

Pressure Drop of Monolithic Catalytic Converters Experiments and Modeling

2002-03-04
2002-01-1010
The pressure drop behavior of catalytic converters has been investigated for a number of different substrates, suitable for high performance IC-engines, regarding cell density, wall thickness and coating. The measurements have been performed on an experimental rig with room-air flow and hot-air flow. The data has been used to develop an empirical model for pressure drop in catalytic converters. The sources of pressure drop, such as viscous and inertial effects, have been separated in the model. The influence of turbulence on the pressure drop has been experimentally investigated. The model agrees well with experimental data and previous literature models and can be applied for 1D predictions as well as 3D CFD calculations.
Technical Paper

Effect of Injection Parameters on Auto-Ignition and Soot Formation in Diesel Sprays

2001-09-24
2001-01-3687
A validation study of the numerical model of n-heptane spray combustion based on experimental constant-volume data [1] was done, by comparing auto-ignition delays for different pre - turbulence levels and initial temperatures, flame contours, and soot distributions under Diesel-like conditions. The basic novelty of the methodology developed in [2] - [3] is the implementation of the partially stirred reactor (PaSR) model accounting for detailed chemistry / turbulence interactions. It is based on the assumption that the chemical processes proceed in two successive steps: micro mixing, simulated on a sub - grid scale, is followed by the reaction act. When the all Re number RNG k-ε or LES models are employed, the micro mixing time can be consistently defined giving the combustion model a “well-closed” form incorporated into the KIVA-3V code.
Technical Paper

Prerequisites for Extensive Computer Manikin Analysis – An Example with Hierarchical Task Analysis, File Exchange Protocol and a Relational Database

2001-06-26
2001-01-2101
In this case study, a human factors engineering (HFE) analysis was carried out in the preliminary design phase of the Cupola. Cupola is a European Space Agency (ESA) module for manned space flights for the International Space Station (ISS) as part of a Barter Arrangement between ESA and the United States National Aeronautics and Space Administration (NASA). Manikin software was used early in the design process before the production of any flight hardware. The manikin analysis was supported by the use of hierarchical task analysis, a file exchange protocol and a relational database. This paper describes methodological aspects of the use of the supporting methods. Results show that hierarchical task analysis, a file exchange protocol and a relational database are prerequisites for successful extensive manikin analysis.
Technical Paper

Speed Limit in City Area and Improvement of Vehicle Front Design for Pedestrian Impact Protection-A Computer Simulation Study

2001-06-04
2001-06-0227
This paper presented a part of results from an ongoing project for pedestrian protection, which is carried out at Chalmers University of Technology in Sweden. A validated pedestrian mathematical model was used in this study to simulate vehicle-pedestrian impacts. A large number of simulations have been carried out with various parameters. The injury-related parameters concerning head, chest, pelvis and lower extremities were calculated to evaluate the effect of impact speed and vehicle front structure on the risk of pedestrian injuries. The effect of following vehicle parameters was studied: stiffness of bumper, hood edge, hood top, windscreen frame, and shape of vehicle front structures. A parameter study was conducted by modelling vehicle-pedestrian impacts with various sizes of cars, mini vans, and light trucks. This choice represents the trends of new vehicle fleet and their frequency of involvement in real world accidents.
Technical Paper

Investigation of Spark Position Effects in a Small Pre-chamber on Ignition and Early Flame Propagation

2000-10-16
2000-01-2839
Lean gas engines have a potential for a significant reduction in both fuel consumption and emission levels. The use of a small pre-chamber with controlled stoichiometric or rich mixture composition is an effective way to deal with ignition problems in such engines. A constant volume vessel equipped with a device for generation of turbulence of known quantities is used to study the operation of a cylindrical pre-chamber of 1% of the main chamber volume. Pressure was measured in the main chamber and Schlieren images of the flame initiation and propagation in the main chamber were recorded for all set-ups. The investigation of the pre-chamber is focused on the position of the spark within the pre-chamber. Spark locations close to the orifice and close to the opposite wall as well as in the middle of the pre-chamber were tested and flame evolution and pressure history were studied.
Technical Paper

Proactive Human Factors Engineering Analysis in Space Station Design Using the Computer Manikin Jack

2000-06-06
2000-01-2166
In this case study, a human factors analysis was carried out in the preliminary design phase of the Cupola, a European Space Agency (ESA) module for manned space flights for the International Space Station (ISS). The manikin software Jack® was used early in the design process before any flight hardware production. All Cupola astronaut tasks were evaluated in a virtual environment of the Cupola. Methodological aspects concerning the analysis are described, e.g. file processing, use of coordinate systems and the use of a prior task analysis. Results show that the thorough manikin analysis supported with the hierarchical task analysis results, was an important help in the design process.
Technical Paper

A Catalytic NOX After-Treatment System for Heavy-Duty Trucks Using Diesel Fuel as Reducing Agent

1999-10-25
1999-01-3563
An advanced catalytic exhaust after-treatment system addresses the problem of NOX emissions from heavy-duty diesel trucks, relying on real-time catalyst modelling. The system consists of de-NOX catalysts, a device for injection of a reducing agent (diesel fuel) upstream the catalysts, and computer programmes to control the injection of the reducing agent and to model the engine and catalysts in real time. Experiments with 5 different air-assisted injectors were performed to determine the effect of injector design on the distribution of the injected diesel in the exhaust gas stream. A two-injector set-up was investigated to determine whether system efficiency could be increased without increasing the amount of catalyst or the amount of reducing agent necessary for the desired outcome. The results were verified by performing European standard transient cycle tests as well as stationary tests.
Technical Paper

Randomness of Flame Kernel Development in Turbulent Gas Mixture

1998-10-19
982617
An expanding cylindrical laminar flame kernel affected by random external strain rates and diffusivity is numerically simulated in order to gain insight into the influence of small-scale turbulence on the combustion variability in engines. In the simulations, the kernel is strained, as a whole, by external velocity gradients randomly generated with either Gaussian or log-normal probability density functions. The influence of small-scale turbulent heat and mass transfer is modeled by turbulent diffusivity, the randomness of which is controlled by the fluctuations in the viscous dissipation averaged over the kernel volume. The computed results show that small-scale phenomena can substantially affect the quenching characteristics of a small flame kernel and the kernel growth history rj(t); the scatter of the computed curves of rf(t) being mainly controlled by the scatter of the duration of the initial stage of kernel development.
Technical Paper

Reduction of Head Rotational Motions in Side Impacts Due to the Inflatable Curtain-A Way to Bring Down the Risk of Diffuse Brain Injury

1998-05-31
986167
Diffuse brain injuries are very common in side impacts, accounting for more than half of the injuries to the head. These injuries are often sustained in less severe side impacts. An English investigation has shown that diffuse brain injuries often originate from interior contacts, most frequently with the side window. They are believed to be mainly caused by quick head rotational motions. This paper describes a test method using a Hybrid III dummy head in a wire pendulum. The head impacts a simulated side window or an inflatable device, called the Inflatable Curtain (IC), in front of the window, at different speeds, and at different impact angles. The inflated IC has a thickness of around 70 mm and an internal (over) pressure of 1.5 bar. The head was instrumented with a three axis accelerometer as well as an angular velocity sensor measuring about the vertical (z) axis. The angular acceleration was calculated.
Technical Paper

A Simple Model of Unsteady Turbulent Flame Propagation

1997-10-01
972993
A model of premixed turbulent combustion is modified for multi-dimensional computations of SI engines. This approach is based on the use of turbulent flame speed in order to suggest a closed balance equation for the mean combustion progress variable. The model includes a single unknown input parameter to be tuned. This model is tested against two sets of experimental data obtained by Bradley et al [17, 18 and 19] and Karpov and Severin [15] in fan-stirred bombs. The model quantitatively predicts the development of the turbulent flame speed, the effects of the initial pressure, temperature, and mixture composition on the turbulent flame speed, and the effects of r.m.s. turbulent velocity and burning mixture composition on the rate of the pressure rise. These results were computed with the same value of the aforementioned unknown input parameter of the model.
Technical Paper

Oxidation of Hydrocarbons Released from Piston Crevices of S.I. Engines

1995-10-01
952539
This work presents a numerical method for predictions of HC oxidation in the cold turbulent wall jet emerging from the piston top land crevice in an S.I. engine, using a complex chemical reaction model. The method has been applied to an engine model geometry with the aim to predict the HC oxidation rate under engine - relevant conditions. According to the simulation a large amount of HC survives oxidation due to the long ignition delay of the wall jet emitted from the crevice. This ignition delay, in turn depends mainly on chemical composition and temperature of the gas mixture in the crevice and also on the temperature distribution in the cylinder boundary layer.
X